X-Ray Fluorescence Analysis and Obsidian Hydration Measurement of Artifact Obsidian from Several Sites in the Mojave National Preserve, San Bernardino County, California

Craig E. Skinner and Jennifer J. Thatcher Northwest Research Obsidian Studies Laboratory

Thirty-two obsidian artifacts from 15 archaeological sites located within the Mojave National Preserve, San Bernardino County, California, were submitted for energy dispersive X-ray fluorescence trace element provenance analysis. The specimens were also processed for hydration rim measurements. The samples were prepared and analyzed at the Northwest Research Obsidian Studies Laboratory under the accession number 2006-116.

Analytical Methods

X-Ray Fluorescence Analysis. Nondestructive trace element analysis of the samples was completed using a Spectrace 5000 energy dispersive X-ray fluorescence spectrometer. The system is equipped with a Si(Li) detector with a resolution of 155 eV FHWM for 5.9 keV X-rays (at 1000 counts per second) in an area 30 mm². Signals from the spectrometer are amplified and filtered by a time variant pulse processor and sent to a 100 MHZ Wilkinson type analog-to-digital converter. The X-ray tube employed is a Bremsstrahlung type, with a rhodium target, and 5 mil Be window. The tube is driven by a 50 kV 1 mA high voltage power supply, providing a voltage range of 4 to 50 kV. For the elements Zn, Rb, Sr, Y, Zr, Nb, and Pb that are reported in Table A-1, we analyzed the collection with a collimator installed and used a 45 kV tube voltage setting and 0.60 mA tube current setting.

The diagnostic trace element values used to characterize the samples are compared directly to those for known obsidian sources reported in the literature and with unpublished trace element data collected through analysis of geologic source samples (Northwest Research 2006a). Artifacts are correlated to a parent obsidian source (or geochemical source group) if diagnostic trace element values fall within about two standard deviations of the analytical uncertainty of the known upper and lower limits of chemical variability recorded for the source. Occasionally, visual attributes are used to corroborate the source assignments although sources are never assigned solely on the basis of megascopic characteristics.

Obsidian Hydration Analysis. An appropriate section of each artifact is selected for hydration slide preparation. Two parallel cuts are made into the edge of the artifact using a lapidary saw equipped with 4-inch diameter diamond-impregnated .004" thick blades. The resultant cross-section of the artifact (approximately one millimeter thick) is removed and mounted on a petrographic microscope slide with Lakeside thermoplastic cement and is then ground to a final thickness of 30-50 microns.

The prepared slide is measured using an Olympus BHT petrographic microscope fitted with a video micrometer unit and a digital imaging video camera. When a clearly defined hydration layer is identified, the section is centered in the field of view to minimize parallax effects. Four rim measurements are typically recorded for each artifact or examined surface. Hydration rinds smaller than

one micron often cannot be resolved by optical microscopy. Hydration thicknesses are reported to the nearest 0.1 μ m and represent the mean value for all readings. Standard deviation values for each measured surface indicate the variability for hydration thickness measurements recorded for each specimen. It is important to note that these values reflect only the reading uncertainty of the rim values and do not take into account the resolution limitations of the microscope or other sources of uncertainty that enter into the formation of hydration rims.

Additional details about specific analytical methods and procedures used for the analysis of the elements reported in Table A-1 and the preparation and measurement of hydration rims are available at the Northwest Research Obsidian Studies Laboratory World Wide Web site at *www.obsidianlab.com* (Northwest Research 2006a).

Results of Analysis

X-Ray Fluorescence Analysis. Thirteen geochemical groups, 12 of which were correlated with known obsidian sources, were identified among the 32 obsidian artifacts that were characterized by X-ray fluorescence analysis. The locations of the sites and the identified obsidian sources are shown in Figure 1. Analytical results are presented in Table A-1 in the Appendix and are summarized in Table 1 and Figure 2.

Figure 1. Locations of the sites and the sources of the artifacts.

				Obs	idian Sources			
Project Site	Bodie Hills	Bristol Mountains	Castle Mountain	Coso (Joshua Ridge)	Coso (Sugarloaf Mountain)?	Coso (West Sugarloaf)	Coso Volcanic Field	Hackberry Mountain
Budweiser Spring (BUD a1)	_	1	-	_	_	_	_	_
CA-SBR-388	_	-	_	_	1	-	-	-
CA-SBR-395	_	_	_	-	_	_	1	_
CA-SBR-1241 (MOJA 869)	-	_	_	1	_	_	_	_
CA-SBR-2011 (MOJA 642)	_	-	1	-	_	_	_	_
CA-SBR-2032	-	_	_	_	_	_	_	_
CA-SBR-2696	-	_	_	-	_	1	_	1
CA-SBR-8271	-	1	_	_	_	_	_	_
CA-SBR-11445	_	1	_	-	-	-	-	_
Castle Peaks Area	-	_	7	_	_	_	_	_
Cave Shelter Site	-	_	_	-	_	_	_	1
DC-01	-	-	_	-	_	-	-	-
Ford Lake (ROC A10)	_	-	_	-	-	-	-	1
Rock Spring (ROC A7)	-	_	_	_	_	_	_	1
Silver Buddy Mine	3	_	_	_	_	2	-	_
Total	3	3	8	1	1	3	1	4

Table 1. Summary of results of trace element studies of artifacts from the sites. Table is continued on next page.

			Obsidian Sourc	es		
Project Site	Kane Springs Wash Caldera Variety 1	Mt. Hicks	Queen	Unknown 1	Wild Horse Canyon	Total
Budweiser Spring (BUD a1)	_	_	_	_	_	1
CA-SBR-388	_	_	_	_	_	1
CA-SBR-395	_	_	_	_	_	1
CA-SBR-1241 (MOJA 869)	_	_	_	_	_	1
CA-SBR-2011 (MOJA 642)	_	_	_	_	_	1
CA-SBR-2032	_	_	_	_	3	3
CA-SBR-2696	_	_	_	_	_	2
CA-SBR-8271	_	_	_	_	_	1
CA-SBR-11445	_	_	_	_	_	1
Castle Peaks Area	_	_	_	_	_	7
Cave Shelter Site	_	_	_	2	_	3
DC-01	1	_	_	_	_	1
Ford Lake (ROC A10)	_	_	_	_	_	1
Rock Spring (ROC A7)	_	_	_	_	_	1
Silver Buddy Mine	_	1	1	_	_	7
Total	1	1	1	2	3	32

Table 1 (continued). Summary of results of trace element studies of artifacts from the sites.

Northwest Research Obsidian Studies Laboratory Report 2006-116

Figure 2. Scatterplot of zirconium (Zr) plotted versus strontium (Sr) for all analyzed artifacts.

The local Castle Mountain, Hackberry Mountain, and Bristol Mountains obsidian sources are described by Christensen et al. (2001), Hewett (1956), Shackley (1994), Torres (1998), and Wilke and Schroth (1989). The majority of the remaining obsidian sources identified in the current investigation are covered by Ericson (1981), Ericson et al. (1976), Gilreath and Hildebrandt (1997), Haarklau et al. (2005), Hughes (1988), and Moore (1997).

Additional descriptive information about the obsidian sources identified in the current investigation may be found at *www.sourcecatalog.com* (Northwest Research 2006b).

Obsidian Hydration Analysis. The 32 obsidian artifacts that were characterized by X-ray fluorescence analysis were prepared for obsidian hydration analysis and yielded 25 measurable rims. The specimen slides are curated at the Northwest Research Obsidian Studies Laboratory under accession number 2006-116. The results are reported in Table B-1 in the Appendix and are summarized in Table 2.

				Hydration Rim	Measurements (mic	crons)		
Project Site	Bodie Hills	Bristol Mountains	Castle Mountain	Coso (Joshua Ridge)	Coso (Sugarloaf Mountain)?	Coso (West Sugarloaf)	Coso Volcanic Field	Hackberry Mountain
Budweiser Spring (BUD a1)	_	1.9	_	_	_	_	_	_
CA-SBR-388	_	_	_	_	4.1	_	_	_
CA-SBR-395	_	_	_	_	_	_	5.0	_
CA-SBR-1241 (MOJA 869)	_	_	_	7.0, 11.1	_	_	_	_
CA-SBR-2011 (MOJA 642)	_	_	2.1	_	_	_	_	_
CA-SBR-2032	_	_	_	_	_	_	_	_
CA-SBR-2696	_	_	_	_	_	7.5	_	4.3
CA-SBR-8271	-	2.4	_	_	_	_	_	_
CA-SBR-11445	_	1.5	_	_	_	_	_	_
Castle Peaks Area	_	_	3.2, 4.0, 4.1, 4.2 5.3, 5.4, 7.7	_	_	_	_	_
Cave Shelter Site	_	_	_	_	_	_	_	3.5
DC-01	_	_	_	_	_	_	_	_
Ford Lake (ROC A10)	_	_	_	_	_	_	_	6.2
Rock Spring (ROC A7)	_	_	_	_	_	_	_	7.6
Silver Buddy Mine	0	_	-	-	-	4.4, 6.7	-	-
Total	0	3	8	2	1	3	1	4

Table 2. Summary of results of obsidian hydration analysis of artifacts. Table is continued on next page.

		Hydratic	on Rim Measureme	ents (microns)		
Project Site	Kane Springs Wash Caldera Variety 1	Mt. Hicks	Queen	Unknown 1	Wild Horse Canyon	Total
Budweiser Spring (BUD a1)	_	-	-	-	-	1
CA-SBR-388	_	_	_	_	_	1
CA-SBR-395	_	_	_	_	_	2
CA-SBR-1241 (MOJA 869)	_	_	_	_	_	1
CA-SBR-2011 (MOJA 642)	_	_	_	_	_	1
CA-SBR-2032	_	_	_	_	0	0
CA-SBR-2696	_	_	_	_	_	2
CA-SBR-8271	_	_	_	_	_	1
CA-SBR-11445	_	_	_	_	_	1
Castle Peaks Area	_	_	_	_	_	7
Cave Shelter Site	_	_	_	2.2, 7.1	_	3
DC-01	9.1	_	_	_	_	1
Ford Lake (ROC A10)	_	_	_	_	_	1
Rock Spring (ROC A7)	_	_	_	_	_	1
Silver Buddy Mine	_	0	0	_	_	2
Total	1	0	0	2	0	25

Table 2 (continued). Summary of results of obsidian hydration analysis of artifacts.

References Cited

Christensen, Don D., Jerry Dickey, and David Lee

2001 The Granite Mountains Archaeological Survey: Prehistoric Land Use in the East Mojave Desert, California. *Pacific Coast Archaeological Society Quarterly* 37:1–78.

Ericson, Jonathon E.

1981 Exchange and Production Systems in Californian Prehistory: The Results of Hydration Dating and Chemical Characterization of Obsidian Sources. BAR International Series 110, Oxford, England.

Ericson, Jonathon E.; T. A. Hagan, and C. W. Chesterman

1976 Prehistoric Obsidian in California II: Geologic and Geographic Aspects. In *Advances in Obsidian Glass Studies*, edited by R. E. Taylor, pp. 218–239. Noyes Press, Park Ridge, New Jersey.

Gilreath, Amy J. and William R. Hildebrandt

- 1997 *Prehistoric Use of the Coso Volcanic Field*. Contributions of the University of California Archaeological Research Facility No. 56, Berkeley, California.
- Haarklau, Lynn, Lynn Johnson, David L. Wagner, Richard E. Hughes, Craig E. Skinner, Jennifer J. Thatcher, and Keith Myhrer
 2005 *Fingerprints in the Great Basin: The Nellis Air Force Base Regional Sourcing Study.* Report prepared for Nellis Air
 Force Base by Prewitt and Associates, Inc., Austin, Texas.

Hewett, D. F.

1956 *Geology and Mineral Resources of the Ivanpah Quadrangle, California and Nevada.* U. S. Geological Survey Professional Paper 275.

Hughes, Richard E.

1988 The Coso Volcanic Field Reexamined: Implications for Obsidian Sourcing and Hydration Dating Research. *Geoarchaeology* 3:253–265.

Moore, Joe

1997 *Great Basin Tool-Stone Sources: The NDOT Obsidian and Tool-Stone Sourcing Project (Draft Version).* Nevada Department of Transportation, Carson City, Nevada.

Northwest Research Obsidian Studies Laboratory

2006a Northwest Research Obsidian Studies Laboratory World Wide Web Site (www.obsidianlab.com).

2006b Northwest Research U. S. Obsidian Source Catalog (www.sourcecatalog.com).

Shackley, M. Steven

1994 Intersource and Intrasource Geochemical Variability in Two Newly Discovered Archaeological Obsidian Sources in the Southern Great Basin. *Journal of California and Great Basin Anthropology* 16:118–129.

Torres, John

1998 Lithic Procurement in the Eastern Mojave Desert and the Use of the Juan Obsidian Clast Source. *Lithic Technology* 23: 85–89.

Wilke, Philip J. and Adella B. Schroth

1989 Lithic Raw Material Prospects in the Mojave Desert, California. *Journal of California and Great Basin Anthropology* 11:146–174.

Appendix

Results of X-Ray Fluorescence and Obsidian Hydration Analysis

Northwest Research Obsidian Studies Laboratory

Table A-1.	Results of XRF	Studies: Sev	veral Sites	in the M	Ioiave]	National I	Preserve. S	San Berna	ardino Coun	tv. California
							~ ~ ,			

	Specime	n				Trace	Elem	ent Co	oncent	rations	5			Rati	DS	
Site	No.	Catalog No.	Zn	Pb	Rb	Sr	Y	Zr	Nb	Ti	Mn	Ba l	$Fe^2 O^{3^T}$	Fe:Mn	Fe:Ti	Geochemical Source
Cave Shelter Site	1	MOJA-1	93 ± 12	30 6	170 5	9 11	49 3	441 10	38 2	1226 90	701 28	0 31	1.30 0.11	15.7	36.0	Hackberry Mountain
Cave Shelter Site	2	MOJA-2	88 ± 11	35 5	165 5	8 28	45 3	278 10	31 2	1216 90	560 28	0 31	0.98 0.11	15.1	27.8	Unknown 1
Cave Shelter Site	3	MOJA-3	62 ± 12	25 6	158 5	ND ND	44 3	287 10	37 2	681 89	402 28	0 31	0.74 0.11	16.2	37.3	Unknown 1
CA-SBr-388	4	MOJA-4	25 ± 13	36 5	251 5	8 15	42 3	104 10	36 2	NM NM	NM NM	NM NM	NM NM	13.1	69.7	Coso (Sugarloaf Mountain)? *
CA-SBr-2032	5	MOJA-5	23 ± 13	30 5	191 5	45 9	24 3	110 10	22 2	NM NM	NM NM	NM NM	NM NM	19.7	34.9	Wild Horse Canyon *
CA-SBr-2032	6	MOJA-6	17 ± 16	36 5	185 5	39 9	20 3	112 10	20 2	NM NM	NM NM	NM NM	NM NM	19.7	34.9	Wild Horse Canyon *
CA-SBr-2032	7	MOJA-7	39 ± 11	34 5	196 5	43 9	21 3	115 10	24 2	NM NM	NM NM	NM NM	NM NM	21.1	34.3	Wild Horse Canyon *
CA-SBr-395	8	MOJA-8	27 ± 14	28 6	270 5	9 11	39 3	104 10	33 2	NM NM	NM NM	NM NM	NM NM	14.1	54.1	Coso Volcanic Field *
CA-SBr-2696	9	MOJA-9	97 ± 11	28 5	158 5	10 10	51 3	423 10	38 2	NM NM	NM NM	NM NM	NM NM	16.6	33.0	Hackberry Mountain *
CA-SBr-2696	10	MOJA-10	58 ± 11	24 6	254 5	14 9	48 3	145 10	43 2	NM NM	NM NM	NM NM	NM NM	44.6	94.6	Coso (West Sugarloaf) *
CA-SBr-8271	11	MOJA-11	66 ± 10	29 5	183 5	139 9	20 3	122 10	21 2	959 90	294 27	667 32	0.66 0.11	20.1	24.2	Bristol Mountains
CA-SBr-11445	12	MOJA-12	31 ± 12	20 6	178 5	138 9	22 3	126 10	20 2	958 90	293 27	688 32	0.77 0.11	23.4	28.1	Bristol Mountains
DC-01	13	MOJA-13	53 ± 11	23 5	178 5	21 9	48 3	164 10	33 2	788 89	169 27	43 33	1.00 0.11	52.0	43.0	Kane Springs Wash Caldera Variety 1
CA-SBr-2011	14	MOJA-14	30 ± 12	25 5	192 5	13 9	31 3	103 10	26 2	747 89	391 28	0 31	0.65 0.11	14.8	30.4	Castle Mountain
CA-SBr-1241	15	MOJA-15	57 ± 10	25 5	214 5	15 9	43 3	158 10	40 2	886 90	332 28	41 33	1.56 0.11	39.7	58.5	Coso (Joshua Ridge)
Castle Peaks Area	16	MOJA-16	36 ± 11	24 5	192 5	11 10	31 3	108 10	25 2	NM NM	NM NM	NM NM	NM NM	17.5	52.6	Castle Mountain *

All trace element values reported in parts per million; \pm = analytical uncertainty estimate (in ppm). Iron content reported as weight percent oxide. NA = Not available; ND = Not detected; NM = Not measured.; * = Small sample.

Northwest Research Obsidian Studies Laboratory

Table A-1.	Results of XRF	Studies: Severa	l Sites in the	Mojave N	lational Preserve	. San Bernarding	County.	California
						,	,	

	Specime	n				Trace	Elem	ent Co	oncent	rations	5			Ratio	DS	
Site	No.	Catalog No.	Zn	Pb	Rb	Sr	Y	Zr	Nb	Ti	Mn	Ba I	$Fe^2 O^{3^T}$	Fe:Mn	Fe:Ti	Geochemical Source
Castle Peaks Area	17	MOJA-17	30 ± 11	20 5	211 5	12 9	31 3	108 10	26 2	NM NM	NM NM	29 41	NM NM	26.8	41.0	Castle Mountain *
Castle Peaks Area	18	MOJA-18	32 ± 12	22 5	181 5	13 9	29 3	101 10	26 2	NM NM	NM NM	16 31	NM NM	19.8	24.3	Castle Mountain *
Castle Peaks Area	19	MOJA-19	40 ± 10	22 5	201 5	11 10	31 3	109 10	26 2	NM NM	NM NM	17 31	NM NM	19.0	21.6	Castle Mountain *
Castle Peaks Area	20	MOJA-20	14 ± 19	20 5	189 5	10 10	32 3	102 10	25 2	NM NM	NM NM	NM NM	NM NM	19.8	50.3	Castle Mountain *
Castle Peaks Area	21	MOJA-21	32 ± 12	14 6	186 5	12 10	30 3	104 10	21 2	438 88	382 28	20 31	0.65 0.11	15.2	50.4	Castle Mountain
Castle Peaks Area	22	MOJA-22	38 ± 11	19 5	180 5	10 10	30 3	102 10	25 2	NM NM	NM NM	NM NM	NM NM	17.4	46.1	Castle Mountain *
Budweiser Spring	23	MOJA-23	31 ± 12	19 6	167 5	131 9	24 3	119 10	19 2	NM NM	NM NM	NM NM	NM NM	22.4	42.6	Bristol Mountains *
Ford Lake	24	MOJA-24	87 ± 11	34 5	162 5	9 10	52 3	415 10	38 2	NM NM	NM NM	NM NM	NM NM	15.4	36.4	Hackberry Mountain *
Rock Spring	25	MOJA-25	109 ± 10	30 5	166 5	9 10	52 3	421 10	35 2	NM NM	NM NM	15 31	NM NM	17.3	25.9	Hackberry Mountain *
Silver Buddy Mine	26	MOJA-26	30 ± 12	33 5	179 5	98 9	12 3	108 10	13 2	518 89	448 28	559 32	0.60 0.11	12.2	40.5	Bodie Hills
Silver Buddy Mine	27	MOJA-27	50 ± 11	28 5	160 5	22 9	23 3	125 10	34 2	683 89	657 28	34 35	0.78 0.11	10.4	39.1	Queen
Silver Buddy Mine	28	MOJA-28	20 ± 14	23 5	256 5	11 10	53 3	135 10	42 2	334 88	285 27	7 31	1.04 0.11	31.8	100.5	Coso (West Sugarloaf)
Silver Buddy Mine	29	MOJA-29	22 ± 13	32 5	190 5	104 9	14 3	101 10	16 2	NM NM	NM NM	528 33	NM NM	12.2	18.1	Bodie Hills *
Silver Buddy Mine	30	MOJA-30	55 ± 10	34 5	279 5	14 9	52 3	134 10	46 2	268 88	207 27	29 41	0.95 0.11	40.5	112.5	Coso (West Sugarloaf)
Silver Buddy Mine	31	MOJA-31	34 ± 11	34 5	182 5	102 9	13 3	102 10	18 2	654 89	399 28	536 32	0.62 0.11	14.0	33.2	Bodie Hills
Silver Buddy Mine	32	MOJA-32	23 ± 13	33 5	152 5	27 9	14 3	85 10	16 2	NM NM	NM NM	NM NM	NM NM	13.2	16.5	Mt. Hicks *

All trace element values reported in parts per million; \pm = analytical uncertainty estimate (in ppm). Iron content reported as weight percent oxide. NA = Not available; ND = Not detected; NM = Not measured.; * = Small sample.

Northwest Research Obsidian Studies Laboratory

Table A-1.	Results of XRF	Studies: Severa	I Sites in the	Moiave	National Preserve	San	Bernardino	County.	California
1 4010 11 11	Itobalto ol lilla	51441051 501010		1110 410	1 (actorial 1 10001 (0	, Maii -	Dunnaranno	country,	Camornia

	Specimer	1				Trace	Elem	ent Co	oncent	rations	5			Ratio	OS	
Site	No.	Catalog No.	Zn	Pb	Rb	Sr	Y	Zr	Nb	Ti	Mn	Ba H	$Fe^2 O^{3^T}$	Fe:Mn	Fe:Ti	Geochemical Source
NA	RGM-1	RGM-1	35 ± 12	18 5	144 5	101 9	24 3	216 10	8 2	1601 92	371 28	786 32	1.76 0.11	40.0	37.0	RGM-1 Reference Standard

All trace element values reported in parts per million; \pm = analytical uncertainty estimate (in ppm). Iron content reported as weight percent oxide. NA = Not available; ND = Not detected; NM = Not measured.; * = Small sample.

	Specime	en			Artifact		Hydratio	n Rims	
Site	No.	Catalog No.	Unit	Depth	Type ^A	Artifact Source	Rim 1	Rim 2	Comments ^B
Cave Shelter Site	1	MOJA-1		Surface	DEB	Hackberry Mountain	3.5 ± 0.0	$NM \pm NM$	
Cave Shelter Site	2	MOJA-2		Surface	DEB	Unknown 1	$2.2\pm~0.1$	$\text{NM} \pm \text{NM}$	
Cave Shelter Site	3	MOJA-3		Surface	DEB	Unknown 1	$7.1\pm~0.1$	$NM \pm NM$	DFV
CA-SBr-388	4	MOJA-4		Surface	DEB	Coso (Sugarloaf Mountain)? *	4.1 ± 0.1	$NM \pm NM$	
CA-SBr-2032	5	MOJA-5		Surface	DEB	Wild Horse Canyon *	$NA \pm NA$	$NM \pm NM$	NVH
CA-SBr-2032	6	MOJA-6		Surface	DEB	Wild Horse Canyon *	$NA \pm NA$	$NM \pm NM$	NVH
CA-SBr-2032	7	MOJA-7		Surface	DEB	Wild Horse Canyon *	$NA \pm NA$	$NM \pm NM$	REC; NVH
CA-SBr-395	8	MOJA-8		Surface	DEB	Coso Volcanic Field *	$5.0\pm~0.1$	$NM \pm NM$	REC
CA-SBr-2696	9	MOJA-9		Surface	DEB	Hackberry Mountain *	4.3 ± 0.0	$NM \pm NM$	DFV
CA-SBr-2696	10	MOJA-10		Surface	DEB	Coso (West Sugarloaf) *	7.5 ± 0.1	$NM \pm NM$	WEA, DFV
CA-SBr-8271	11	MOJA-11		Surface	DEB	Bristol Mountains	2.4 ± 0.0	$NM \pm NM$	
CA-SBr-11445	12	MOJA-12			DEB	Bristol Mountains	1.5 ± 0.1	$NM \pm NM$	
DC-01	13	MOJA-13		Surface	BIF	Kane Springs Wash Caldera Variety 1	9.1 ± 0.1	$NM \pm NM$	Same rim on BRE
CA-SBr-2011	14	MOJA-14		Surface	DEB	Castle Mountain	2.1 ± 0.1	$NM \pm NM$	
CA-SBr-1241	15	MOJA-15		Surface	UNI	Coso (Joshua Ridge)	7.0 ± 0.1	11.1 ± 0.1	REC; small rim on dorsal margin
Castle Peaks Area	16	MOJA-16		Surface	DEB	Castle Mountain *	4.2 ± 0.0	$NM \pm NM$	
Castle Peaks Area	17	MOJA-17		Surface	DEB	Castle Mountain *	4.1 ± 0.1	$NM \pm NM$	
Castle Peaks Area	18	MOJA-18		Surface	DEB	Castle Mountain *	7.7 ± 0.1	$NM \pm NM$	
Castle Peaks Area	19	MOJA-19		Surface	DEB	Castle Mountain *	5.3 ± 0.1	$NM \pm NM$	
Castle Peaks Area	20	MOJA-20		Surface	DEB	Castle Mountain *	5.4 ± 0.1	$NM \pm NM$	NVH on dorsal
Castle Peaks Area	21	MOJA-21		Surface	DEB	Castle Mountain	3.2 ± 0.1	$NM \pm NM$	
Castle Peaks Area	22	MOJA-22		Surface	DEB	Castle Mountain *	4.0 ± 0.1	$NM \pm NM$	
Budweiser Spring	23	MOJA-23		Surface	DEB	Bristol Mountains *	1.9 ± 0.1	$NM \pm NM$	

Northwest Research Obsidian Studies Laboratory Table B-1. Obsidian Hydration Results and Sample Provenience: Several Sites in the Mojave National Preserve, California

^A BIF = Biface; DEB = Debitage; UNI = Uniface
 ^B See text for explanation of comment abbreviations NA = Not Available; NM = Not Measured; * = Small sample

	n Rims	Hydratio	t.	Artifact			en	Specime	
Comments ^B	Rim 2	Rim 1	A Artifact Source	Type ^A	Depth	Unit	Catalog No.	No.	Site
REC; DFV	$NM \pm NM$	$6.2\pm~0.1$	Hackberry Mountain *	DEB	Surface		MOJA-24	24	Ford Lake
	$\text{NM} \pm \text{NM}$	$7.6\pm~0.1$	Hackberry Mountain *	DEB	Surface		MOJA-25	25	Rock Spring
REC; NVH (possibly burnt)	$\rm NM \pm \rm NM$	$NA \pm NA$	Bodie Hills	BIF	Surface		MOJA-26	26	Silver Buddy Mine
UNR (possibly burnt)	$\rm NM \pm \rm NM$	$NA \pm NA$	Queen	BIF	Surface		MOJA-27	27	Silver Buddy Mine
	$\rm NM \pm \rm NM$	4.4 ± 0.1	Coso (West Sugarloaf)	BIF	Surface		MOJA-28	28	Silver Buddy Mine
NVH (possibly burnt)	$\text{NM} \pm \text{NM}$	$NA \pm NA$	Bodie Hills *	BIF	Surface		MOJA-29	29	Silver Buddy Mine
	$NM \pm NM$	$6.7\pm~0.1$	Coso (West Sugarloaf)	BIF	Surface		MOJA-30	30	Silver Buddy Mine
UNR (crystalline)	$NM \pm NM$	$NA \pm NA$	Bodie Hills	BIF	Surface		MOJA-31	31	Silver Buddy Mine
UNR (possibly burnt)	$NM \pm NM$	$NA \pm NA$	Mt. Hicks *	BIF	Surface		MOJA-32	32	Silver Buddy Mine

Northwest Research Obsidian Studies Laboratory Table B-1. Obsidian Hydration Results and Sample Provenience: Several Sites in the Mojave National Preserve, California

 ^A BIF = Biface; DEB = Debitage; UNI = Uniface
 ^B See text for explanation of comment abbreviations NA = Not Available; NM = Not Measured; * = Small sample

Abbreviations and Definitions Used in the Comments Column

All hydration rim measurements are recorded in microns.

BEV - (Beveled). Artifact morphology or cut configuration resulted in a beveled thin section edge.

BRE - (BREak). The thin section cut was made across a broken edge of the artifact. Resulting hydration measurements may reveal when the artifact was broken, relative to its time of manufacture.

DES - (DEStroyed). The artifact or flake was destroyed in the process of thin section preparation. This sometimes occurs during the preparation of extremely small items, such as pressure flakes.

DFV - (Diffusion Front Vague). The diffusion front, or the visual boundary between hydrated and unhydrated portions of the specimen, are poorly defined. This can result in less precise measurements than can be obtained from sharply demarcated diffusion fronts. The technician must often estimate the hydration boundary because a vague diffusion front often appears as a relatively thick, dark line or a gradation in color or brightness between hydrated and unhydrated layers.

DIS - (DIScontinuous). A discontinuous or interrupted hydration rind was observed on the thin section.

HV - (Highly Variable). The hydration rind exhibits variable thickness along continuous surfaces. This variability can occur with very well- defined bands as well as those with irregular or vague diffusion fronts.

IRR - (IRRegular). The surfaces of the thin section (the outer surfaces of the artifact) are uneven and measurement is difficult.

1SO - (1 Surface Only). Hydration was observed on only one surface or side of the thin section.

NOT - (NOT obsidian). Petrographic characteristics of the artifact or obsidian specimen indicate that the specimen is not obsidian.

NVH - (No Visible Hydration). No hydration rind was observed on one or more surfaces of the specimen. This does not mean that hydration is absent, only that hydration was not observed. Hydration rinds smaller than one micron often are not birefringent and thus cannot be seen by optical microscopy. "NVH" may be reported for the manufacture surface of a tool while a hydration measurement is reported for another surface, e.g. a remnant ventral flake surface.

OPA - (OPAque). The specimen is too opaque for measurement and cannot be further reduced in thickness.

PAT - (PATinated). This description is usually noted when there is a problem in measuring the thickness of the hydration rind, and refers to the unmagnified surface characteristics of the artifact, possibly indicating the source of the measurement problem. Only extreme patination is normally noted.

REC - (RECut). More than one thin section was prepared from an archaeological specimen. Multiple thin sections are made if preparation quality on the initial specimen is suspect or obviously poor. Additional thin sections may also be prepared if it is perceived that more information concerning an artifact's manufacture or use can be obtained.

UNR - (UNReadable). The optical quality of the hydration rind is so poor that accurate measurement is not possible. Poor thin section preparation is not a cause.

WEA - (WEAthered). The artifact surface appears to be damaged by wind erosion or other mechanical action.